If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3y4 + -5y2 + 1 = 0 Reorder the terms: 1 + -5y2 + 3y4 = 0 Solving 1 + -5y2 + 3y4 = 0 Solving for variable 'y'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 0.3333333333 + -1.666666667y2 + y4 = 0 Move the constant term to the right: Add '-0.3333333333' to each side of the equation. 0.3333333333 + -1.666666667y2 + -0.3333333333 + y4 = 0 + -0.3333333333 Reorder the terms: 0.3333333333 + -0.3333333333 + -1.666666667y2 + y4 = 0 + -0.3333333333 Combine like terms: 0.3333333333 + -0.3333333333 = 0.0000000000 0.0000000000 + -1.666666667y2 + y4 = 0 + -0.3333333333 -1.666666667y2 + y4 = 0 + -0.3333333333 Combine like terms: 0 + -0.3333333333 = -0.3333333333 -1.666666667y2 + y4 = -0.3333333333 The y term is -1.666666667y2. Take half its coefficient (-0.8333333335). Square it (0.6944444447) and add it to both sides. Add '0.6944444447' to each side of the equation. -1.666666667y2 + 0.6944444447 + y4 = -0.3333333333 + 0.6944444447 Reorder the terms: 0.6944444447 + -1.666666667y2 + y4 = -0.3333333333 + 0.6944444447 Combine like terms: -0.3333333333 + 0.6944444447 = 0.3611111114 0.6944444447 + -1.666666667y2 + y4 = 0.3611111114 Factor a perfect square on the left side: (y2 + -0.8333333335)(y2 + -0.8333333335) = 0.3611111114 Calculate the square root of the right side: 0.600925213 Break this problem into two subproblems by setting (y2 + -0.8333333335) equal to 0.600925213 and -0.600925213.Subproblem 1
y2 + -0.8333333335 = 0.600925213 Simplifying y2 + -0.8333333335 = 0.600925213 Reorder the terms: -0.8333333335 + y2 = 0.600925213 Solving -0.8333333335 + y2 = 0.600925213 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '0.8333333335' to each side of the equation. -0.8333333335 + 0.8333333335 + y2 = 0.600925213 + 0.8333333335 Combine like terms: -0.8333333335 + 0.8333333335 = 0.0000000000 0.0000000000 + y2 = 0.600925213 + 0.8333333335 y2 = 0.600925213 + 0.8333333335 Combine like terms: 0.600925213 + 0.8333333335 = 1.4342585465 y2 = 1.4342585465 Simplifying y2 = 1.4342585465 Take the square root of each side: y = {-1.197605338, 1.197605338}Subproblem 2
y2 + -0.8333333335 = -0.600925213 Simplifying y2 + -0.8333333335 = -0.600925213 Reorder the terms: -0.8333333335 + y2 = -0.600925213 Solving -0.8333333335 + y2 = -0.600925213 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '0.8333333335' to each side of the equation. -0.8333333335 + 0.8333333335 + y2 = -0.600925213 + 0.8333333335 Combine like terms: -0.8333333335 + 0.8333333335 = 0.0000000000 0.0000000000 + y2 = -0.600925213 + 0.8333333335 y2 = -0.600925213 + 0.8333333335 Combine like terms: -0.600925213 + 0.8333333335 = 0.2324081205 y2 = 0.2324081205 Simplifying y2 = 0.2324081205 Take the square root of each side: y = {-0.482087254, 0.482087254}Solution
The solution to the problem is based on the solutions from the subproblems. y = {-1.197605338, 1.197605338, -0.482087254, 0.482087254}
| 8-x=-10+2x | | 502.40=200+1.08x | | 502.40=200+1.08c | | 6x+23=9x-16 | | x^2+a^2-b^2=0 | | 7(6K-8)-16K=4K-(3K-19) | | 502.40=200+1.08 | | 2a^4b^4+8a^3b^5= | | 0.5t+3=1 | | z+1=4+3z | | 5x-3=3(2x-4) | | 9x=8x-19 | | 3t-4t+2=-5t-7-t | | x^2-13x-72=0 | | 36F-21-6F=-255+4F | | 4.2(7.4-4.7b)-0.7b=104.03036 | | x^4-8*x^2+17=0 | | 9k-2=3k+10 | | 3(5x-1)=2x(3) | | 20=-23x | | 2-3x=7x+12 | | 15+6x=45+8x | | 2(x-3)-3(4x-5)=17-8x | | -2t-7=5t+10 | | 9-6=2 | | 12x=4x+36 | | 2(3x+4)=5x+2 | | 9x-3=6x+6 | | 7.6x-4.9x=48.6 | | 7(3-R)+R=5-2R | | 0.5(-12c+6)=-3(c+4)+10(c-5) | | 2x+6=10x+3 |